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Resume in danish

Nærværende opgave har som hovedformål at give en path integral formulering af spin-bane
koblingen. Spin-bane koblingen er en fysisk effekt observeret ved ladede partikler i nærvær af
E− og B−felter, og i de senere år er denne effekt blevet fremhævet som en metode til eksperi-
mentelt at realisere kvantecomputere, hvilket har bevirket en øget interesse for effekten. Path
integral formuleringen af kvantemekanik st̊ar som et alternativ til Schrödinger og Heisenbergs
formuleringer, og byder p̊a en radikalt anderledes tilgang til, og forst̊aelse af, kvantemekanik.
Path integral formulering har klare fordele og ulemper, og spin er desværre ikke en af formu-
leringens stærke sider. Konceptuelt er det dog absolut nødvendigt, at denne formalisme ogs̊a
p̊a tilstrækkelig vis kan behandle spin. Vigtigheden af at kunne beskrive spin fremhæves af,
at Feynman, ophavsmanden til path integral formalisme, valgte ikke at undervise i path inte-
graler, pga formalismens, p̊a det tidspunkt, utilstrækkelighed til at beskrive spin! Det er mit
ydmyge h̊ab at denne opgave vil bidrage til en bredere forst̊aelse af hvorledes path integraler
benyttes i praksis, og i særdeleshed, hvordan spin inkorporeres i formalismen.

Fokus for opgaven er at sikre grundlaget for, og grundigt at udføre, de nødvendige bereg-
ninger, der leder frem til en sammenhængende beskrivelse af en partikel med spin-orbit kobling
i path integral formalismens sprog. Opgaven er udformet s̊aledes at en person med et godt
fundament i Hamiltonformuleringen af kvantemekanik vil kunne læse den, uden at ty til ekstra
kilder. P̊a grund af længdebegrænsninger p̊a bacheloropgaver ved Det Naturvidenskabelige
Fakultet, er diskussionerne af spin-orbit kobling og path integral formuleringerne noget kortere
end hvad man kunne ønske. De indeholder dog naturligvis den nødvendige information for at
motivere de videre beregninger i opgaven. I litteraturlisten findes inspiration til videre læsning.

En tak skal lyde til min vejleder Karsten Flensberg for altid at st̊a klar med hjælp til
drilsk algebra og for de mange oplysende og afklarende diskussioner. Desuden en til tak Emil
Zeuthen for hans øje for detalje, ogs̊a p̊a tværs af atlanten. Til sidst en tak til mine forældre og
min bror for deres vedvarende og uundværlige støtte, samt for deres hjælp med at opretholde
et meningsfyldt næringsindtag i dette for̊ar.

Morten Kjærgaard,
København, maj 2008

mkjaergaard@gmail.com



Contents

1 Introduction 5

2 The spin-orbit interaction and the Hilbert space 6

2.1 The physical system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1.1 The spin-orbit interaction . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Hilbert space and basis states . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.1 Position and momentum basis . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.2 Spin basis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3 The path integral formalism 13

3.1 The third formulation of quantum mechanics . . . . . . . . . . . . . . . . . . . 13
3.2 General observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.2.1 A first approach to division of the time evolution operator . . . . . . . . 15
3.2.2 The time evolution operator in N divisions . . . . . . . . . . . . . . . . 16

4 Evaluating kernels 19

4.1 General remarks on the evaluation of kernels . . . . . . . . . . . . . . . . . . . 19
4.1.1 Evaluating the inner products . . . . . . . . . . . . . . . . . . . . . . . . 20
4.1.2 Evaluating terms independent of spin . . . . . . . . . . . . . . . . . . . 21
4.1.3 Evaluating terms dependent of spin . . . . . . . . . . . . . . . . . . . . 23

4.2 Combination of terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

5 A complete path integral for the spin-orbit interaction 26

5.1 The amplitude . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.1.1 Continuum limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5.2 The semi-classical approximation . . . . . . . . . . . . . . . . . . . . . . . . . . 29

6 Conclusion 31

6.1 Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
6.2 Omissions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

Appendices 33

A Calculation of energy from torque 33

3



CONTENTS

B Spin states in spherical coordinates 34

C Completeness of spin states 36

D Expansion of spin states 38

E Evaluation of terms involving momentum operators in spin-dependent Hamil-

tonian 40

F List of symbols 42

Bibliography 42

4



Chapter 1

Introduction

The aim of this thesis is to provide a formulation of the spin-orbit interaction in the framework
of Feynmans path integral formalism for quantum mechanics. The path integral formulation is
an alternative to the Hamiltonian-based description of quantum mechanics, and it provides an
interesting and radically different view and approach to the field of quantum mechanics, than
the Hamiltonian formalism. The spin-orbit interaction was chosen as the physical phenomenon
to which path integral formalism is applied, because spin-orbit interaction have recently proven
a promising candidate as the mediator for control of the intrinsic spin of electrons. This
control is integral for the emerging field of semiconductor spintronics, and as such, merits
further study.

A combined interest in the foundation of quantum mechanics, and modern approaches to
quantum computing, sparked the idea that would eventually lead to this thesis. The treatment
of spin-orbit interaction and path integral formalism presented here, are both self-contained.
However, the reader is assumed to have a fair background in basic quantum mechanics. Knowl-
edge of neither the spin-orbit interaction nor the path integral formulation is a prerequisite, but
because of time- and space limitation, the discussion of the physical consequences of spin-orbit
interaction is only briefly touched upon. Likewise, the formal introduction to the path integral
formalism is not exhaustive, but provides only a brief introduction to the basic concepts, and
introduces the ideas relevant for the study of spin-orbit interaction in this framework.

The body of this thesis is comprised of the actual calculations needed to describe spin-
orbit interaction with path integrals. The inclusion of spin in path integral calculations is by
no means trivial, and several requisites have to be insured, before a description of spin-orbit
interaction is possible. The final result is esoteric, but nonetheless, provides an interesting
alternative formulation to what a Hamiltonian-based treatment yields.
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Chapter 2

The spin-orbit interaction and the

Hilbert space

The aim of this chapter is two-fold. First an introduction to the physical system that is of
interest in this thesis, and second, to introduce the Hilbert space most suitable when dealing
with the Hamiltonian for this setup. We begin with a primer on why such a system merits
a study as this and briefly introduce the Hamiltonian. The Hamiltonian involves a spin-
orbit interaction term, which will be explicitly derived, but, unfortunately, none of the many
suprising physical consequences will be discussed in detail. The path-integral formalism is
postponed for the next chapter, where we will make some general observations regarding the
formalism. For now, we only use the Hamiltonian to describe the system.

2.1 The physical system

Controlling the spin of a single electron is the basis for the emerging field of semiconductor
spintronics, popularized under the name quantum computing. As a consequence, several
methods have been proposed as a means to control the spin [1]. Recently, a strategy that relies
on the spin-orbit interaction for manipulating the spin of the electrons in a highly controlled
manner have been promoted [2]. One such strategy relies on confining the electron to move
in a 0D potential well, and we will in this thesis consider such a well, as inspired by Flindt et

al. [3]. Semiconductors of type III-V such as InAs, InGaAs and InSb are very suitable for the
experimental realization of such 0D devices, because of these materials asymmetric potentials
in the transition layer, which are tunable by applying a gate-voltage to the setup [4]. The type
of spin-orbit interaction we consider arise as a consequence of this lack of inversion symmetry
in the transition layer potential, and is refered to as the Rashba spin-orbit interaction [4, 5].
Figure 2.1 illustrates such a semiconductor setup, that allows for the control of spin, through
the Rashba spin-orbit interaction.
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2.1. The physical system
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Figure 2.1: left) An idealized geometry allowing for control of the electron spin, through
the spin-orbit interaction. The black outlined are electrodes and the tube is an
III-V wire. center) An example of a possible potential over the wire. right) En
example of a transition-layer potential in the III-V wire. The potential is not
symmetric under inversion, and it is this potential that gives rise to the spin-
orbit interaction. The lefthand side is a type III material, and the righthand
side is a type V material, denoted by · and + respectively.

If we apply an external magnetic field B to a geometry as the one in fig. 2.1, the Hamil-
tonian describing an electron on the wire is given by

H =
(p̂ − qeA)2

2m
+ V (q̂) + HSO, (2.1)

where V (q̂) is a potential such as the one in fig.2.1, qe is the charge of the electron, A satisfies
B = ∇ × A, and p̂ is the three-dimensional quantum mechanical momentum operator. The
replacement p̂ → p̂− qeA in the kinetic term is simply a result from classical mechanics. The
explicit form of the Rashba spin-orbit term, HSO, will be derived in section 2.1.1.

2.1.1 The spin-orbit interaction

The spin-orbit interaction is a relativistic effect. Although the electron is not in general moving
with speeds that would require a relativistic treatment in a system such as this, the electric
fields surrounding the atomic nucleii in the wire are large enough to yield weak relativistic
effects (Section 5.4 in [6]). There are several ways to derive the explicit form of the spin-orbit
interaction. However, the two most often encountered are

• The systematically relativistic: Solving the the Dirac equation (which is the relativistic
Schrödinger equation), for a single-particle state exposed to a vector potential A. This
method is surprisingly cumbersome and is beyond the scope of this thesis. A detailed
derivation can be found in chapter 24 of [7].

• The ad hoc: Assuming that an electron constitutes a magnetic dipole and finding the
torque on a magnetic dipole in an electric and magnetic field. The relativistic effects are
then accounted for by doing a Lorentz-transformation into the rest-frame of the electron,
to find out what effective B-field the electron ”feels”.
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2.1. The physical system

In this thesis, we follow the ad hoc-strategy. The two strategies are, in terms of finding the
explicit form of only the spin-orbit interaction, equivalent. The ad hoc approach relegates
the relativistic effects to the coordinate change, whereas the systematically relativistic uses
the relativistic nature of the spin-orbit interaction as its starting point, by using the Dirac
equation instead of the Schrödinger equation.

The ad hoc derivation starts with a näıve assumption: The spin of an electron is equivalent
to the rotation of a classical sphere. This is a crude assumption, but the error that arises, can
be corrected. It is a result from classical electrodynamics, that a spinning charged particle
constitutes a magnetic dipole, meaning that an electron will also constitute a magnetic dipole
[8, 9]. Thus, if the electron moves in an external B-field, it will feel a torque given by

τ = µ × B, (2.2)

where B = (Bx, By, Bz) and µ is the magnetic dipole moment of the electron given by

µ =

(
ge

2me

)

S,

where S is just the classic spin angular momentum of a rotating sphere. If we Lorentz-
transform into a coordinate system moving with the electron, it turns out that the electron
will feel an effective magnetic field given by1

Beff = B− v

c2
× E.

Note here, that the E-field is not an externally applied one, since this would rarely be strong
enough to provoke relativistic effects, but rather, it is the E-field arising from the nucleii of
the atoms. Inserting this effective magnetic field into eq. (2.2) yields

τ =

(
ge

2me

)

S×
(

B− v

c2
× E

)

.

From the torque, the energy can be calculated, and is given by2

U = −
(
ge

2me

)

S · B +

(
ge

2m2
ec

2

)

S · (p× E) . (2.3)

There is no quantum mechanics in eq. (2.3). However, boldly replacing S and p with their
quantum mechanical counterparts, ~

2σ and p̂ respectively, in eq. (2.3) yields the (almost)
correct form of the quantum mechanical spin-orbit coupling. Making the substitution

p → p̂ = −i~∇

S → ~

2
σ =

~

2

[(
0 1
1 0

)

,

(
0 −i
i 0

)

,

(
1 0
0 −1

)]

1The explicit calculation can be found in section 11.10 in [10]. Note that contributions to the effective
B-field arising from the magnetic moment of the nucleii are not included here.

2The calculation is relegated to appendix A.
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2.2. Hilbert space and basis states

in eq. (2.3), we see that the quantum mechanical energy is given by

Uquantum = −
(
ge~

4me

)

σ ·B +

(
ge~

4m2
ec

2

)

σ · (p̂× E) . (2.4)

Unfortunately, this very crude equating of classical and quantum mechanics introduces an
error. The second term is twice the size of what a proper quantum mechanical treatment
yields.3 Introducing a factor of 1/2, known as the Thomas precession, which arises as a
consequence of relativistic effects, in eq. (2.4)

Uquantum = −
(
ge~

4me

)

σ ·B +

(
ge~

8m2
ec

2

)

σ · (p̂× E) , (2.5)

yields the correct result. Introducing the two constants α = ge~

8m2
ec2

and µb = − e~

4me
, we arrive

at the final form of the spin-dependent contribution to the potential part of the Hamiltonian

HSO = −gµbσ ·B + ασ · (p̂× E) (2.6)

The first term in the above equation is the Zeeman term, which is just what we would expect
from a spinful charged particle in a magnetic field. If we assume a radial electric field, such
that E ∼ r̂, the second term can be recast as

σ · (p̂ × E) ∼ σ · L

which emphasizes why we understand this term as the spin-orbit interaction. The name arises
as a consequence of the coupling between the spin and the orbital angular momentum of
the electron, through the electric field of the nucleii. As a consequence, the strength of the
spin-orbit interaction is material-dependent. The factor α is a measure of the strength of the
spin-orbit interaction, and numerical examples are 5.3Å2 in GaAs and 120Å2 in InAs [11].

Thus, returning to eq.(2.1), the complete Hamiltonian describing an electron in a magnetic
field B = ∇× A, and spin-orbit interaction is given by

H =
(p̂− qeA)2

2m
+ V (q̂) − gµbσ · B + ασ · (p̂× E) (2.7)

This is the form of the Hamiltonian that we will investigate throughout this thesis. Note, that
although we considered a 0D quantum well in the beginning of this section, we will perform
the rest of the calculations in this thesis in 3D, for the sake of generality.

2.2 Hilbert space and basis states

Now that we have outlined the physical system of interest, the next step is to select a proper
basis, before we approach the true problem of describing a Rashba spin-orbit coupled particle

3See for example [10] section 11.8 for a full derivation.
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2.2. Hilbert space and basis states

in the path integral formalism. We will be working in 3 + 3 + 2 dimensional Hilbert space
denoted H . Six of these dimensions are attributed to position and momentum (the phase-
space); (x, y, z) and (px, py, pz). The final two dimensions arise from the spin-component of
the Hamiltonian. In section 2.2.1 we review properties of the phase-space, and in section
2.2.2 we introduce the special basis of the |z〉-states, which we will use as a basis for the
spin-component of the Hamiltonian.

2.2.1 Position and momentum basis

We start out in the Schrödinger picture, and use Dirac notation. Let |q〉 denote an eigenstate
of the three-dimensional position-operator q̂ ≡ (q̂x, q̂y, q̂z) with eigenvalue q = (qx, qy, qz) and
|p〉 denote an eigenstate of the three-dimensional momentum operator p̂ ≡ (p̂x, p̂y, p̂z) = ~

i ∇
with eigenvalue p = (px, py, pz). Two different position and momentum operator eigenstates
are orthogonal,

〈q′|q〉 = δ3(q′ − q) and 〈p′|p〉 = δ3(p′ − p),

because q̂ and p̂ are hermitian operators. It will prove convenient to have the form of the
momentum operator eigenstates represented in the basis of position operator eigenfunctions.
The eigenstates are related through a fourier transform, thus

〈q|p〉 = (2π~)−3/2eip·q/~ and equivalently 〈p|q〉 = (2π~)−3/2e−ip·q/~.

We need one more very important property, completeness of the eigenstates:
∫

d3q|q〉〈q| = I3×3 ,

∫

d3p|p〉〈p| = I3×3, (2.8)

the boldface I3×3 is used to signify an identity operator in the Hilbert space H|q〉 spanned by
|q〉. The fact that |q〉 and |p〉 form complete sets, is a consequence of p̂ and q̂ both being
hermitian operators in a finite dimensional Hilbert space, whose eigenstates are known to be
complete.4 In table 2.1 all of the properties of the basis states are listed.

Position Momentum

q̂|q〉 = q|q〉, 〈q|q̂ = 〈q|q p̂|p〉 = p|p〉, 〈p|p̂ = 〈p|p
〈q′|q〉 = δ3(q′ − q) 〈p′|p〉 = δ3(p′ − p)

〈p|q〉 = (2π~)−3/2e−ip·q/~ 〈q|p〉 = (2π~)−3/2eip·q/~

∫

d3q|q〉〈q| = I3×3

∫

d3p|p〉〈p| = I3×3

Table 2.1: Properties of position and momentum eigenkets and -bras.

4Unlike the infinite-dimensional case, where completeness of eigenfunctions of hermitian operators is not
insured.
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2.2. Hilbert space and basis states

2.2.2 Spin basis

Seeing as our Hamiltonian also involves spin-components we will need some appropiate set of
kets (bras) to use as basis for the spin. The spin will be represented in a two-dimensional
Hilbert space, called H|z〉 for reasons to be explained below. We equip H|z〉 with a basis given

by the two vectors

(
1
0

)

and

(
0
1

)

, which we will denote as |↑〉 and |↓〉 respectively. Note

that these states are orthonormal. A crucial step in arriving at a path integral representation
for particles involving spin is to use a suitable basis in H|z〉. As a consequence, the intuitive
basis of |↑〉 and |↓〉 will not be used. Rather, in accordance with [12], we will use a basis given
by

|z〉 = N (z) exp(zσ+)|↓〉 (2.9)

where z = u+ iv, u, v ∈ R
1, N (z) is the normalizing factor, and σ+ is the creation operator.5

We define H|z〉 to be the 2-dimensional Hilbert space spanned by |z〉. Creation and annihilation
operators will play an important role in the next sections, so their properties in H|z〉, are listed
in table 2.2.

Annihilation Creation

σ− =

(
0 0
1 0

)

σ+ =

(
0 1
0 0

)

(σ−)
†
= σ+ (σ+)† = σ−

σ−|↑〉 = |↓〉 σ+|↑〉 = 0

σ−|↓〉 = 0 σ+|↓〉 = |↑〉.

Table 2.2: Properties of the creation and annihilation operators.

Using these properties, and that expx = 1 + x+ x2

2 + · · · , eq. (2.9) can be recast as

|z〉 = N (z) exp(zσ+)|↓〉 = N (z)(1 + zσ+)|↓〉 = N (z) (|↓〉 + z|↑〉) .

This expansion is exact, because only two terms are nonvanishing. In H|z〉, it is only possible
to apply σ+ or σ− once without ending with the null-ket regardless of the state they are ap-
plied to, cf. table 2.2. Higher order terms in the expansion therefore vanish. Using this form
of |z〉 the normalizing factor N (z) is easily found by taking the inner product and exploiting
orthonormality of |↓〉 and |↑〉, which gives N (z) = 1/

√

1 + |z|2. Expressing a 2-dimensional
spinor |z(u, v)〉 as a function of the real and imaginary parts of a complex number z = u+ iv
is equivalent to the usual definition of a spinor |χ(θ, ϕ)〉 expressed in spherical coordinates.
The equivalence between two points (u, v) in the complex plane and the spherical coordinates

5In the infinite-dimensional case, these states are eigenfunctions of the infinite dimensional annihilation
operator, â. For the proof see [13] chap. 27.
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2.2. Hilbert space and basis states

(θ, ϕ) is shown in appendix B.

Just as in the case of |q〉 and |p〉 it is necessary to have the completeness relation, i.e. the
analogue of eq. (2.8) for the |z〉 states. These states are at the outset not complete. To ensure
completeness we introduce a special measure6. In [12] it is suggested to use the measure dµ(z)
given by

∫

dµ(z) =

∫
2

π

1

(1 + |z|2)2 d
2z =

∫ ∞

−∞

∫ ∞

−∞

2

π

1

(1 + |z|2)d(Rez)d(Imz). (2.10)

Thus, using this measure, it is necessary to show that
∫

|z〉〈z|dµ(z) = I2×2. (2.11)

where I2×2 is an identityoperator in H|z〉. The calculation is straightforward, but requires a
certain amount of algebra, and have therefore been relegated to appendix C. The result is, of
course, that relation (2.11) holds.

Throughout this thesis, we will use a Hilbert space defined by H = H|q〉 ⊗ H|z〉, where
H|q〉,|z〉 is the Hilbert spaces spanned by the kets |q〉 and |z〉 respectively. It is important to
note, that the subspaces spanned by |q〉 and |z〉 are linearly independent. The linear indepen-
dence allows us to formally write a state |q〉⊗|z〉 as |q, z〉. This means that a given state |ψ〉 can
be represented in the basis of |q, z〉 simply by 〈q, z|ψ〉 = ψ(q, z). For notational purposes, we
will write |q, z〉 as |q〉|z〉 but still understand it as the more formal expression |q〉⊗|z〉 , so that
an operator working in H|q〉, p̂ for example, is formally given by p̂ ≡ p̂⊗I2×2, and an operator
σ working in H|z〉 is understood as σ ≡ I3×3 ⊗ σ etc. In chapter 3 we will encounter terms
of the form

∫
d3q|q〉〈q|

∫
dµ(z)|z〉〈z| = I3×3I2×2. Such a term would have been meaningless,

but because of the construction of our Hilbert space, we now easily recognize these identity
operators as belonging to different subspaces of H , and thus, the differences in dimensionality
are no longer a problem. As it turns out, it us useful to represent an electron governed by
the Hamiltonian H = H0+HSO in the basis of |q, z〉. This will be further explored in chapter 3.

In the present chapter we briefly touched on a possible device for quantum computing,
which relied on the use of the Rashba spin-orbit interaction. An interest in this device mo-
tivated a derivation of the explicit form of the Rashba spin-orbit interaction term, HSO, in
section 2.1.1. After this derivation, the complete Hamiltonian was found in eq. (2.7). In
sections 2.2.1 and 2.2.2, the basis in which we will represent our system was introduced. The
special measure dµ(z) was introduced to ensure completeness of the |z〉 states and a short dis-
cussion of the construction of the Hilbert space H ensued. The next chapter will introduce
Feynmans Lagrangian-based formulation of quantum mechanics, the path integral formalism,
and some general observations on how to qualitatively approach such a formulation, from the
Schrödinger picture.

6The explicit form of the measure can be derived explicitly by SU(2) group theory. Here, we will merely
just show that it works in the sense that it gives completeness of the |z〉 states. For details on the SU(2) group
and |z〉-states, see [14, 15].
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Chapter 3

The path integral formalism

After a presentation of the physical system, and the basis which we will use to represent our
system, we are ready to attack the true problem: The path integral formalism of quantum
mechanics, and how to represent a spin-orbit coupled electron in this formalism. In section 3.1
a brief introduction to the fundamentals of the path integral formalism is discussed. However,
this is a vast field, and it is beyond the scope of this thesis to go into many of the interesting
consequences of this formalism. Feynman’s book [16] is a comprehensive introduction, and
discusses in great detail the physical interpretation of path integrals. The path integrals have
some mathematical difficulties, especially in terms of convergence, which will not be touched
upon here. The mathematically inclined reader may benefit from the discussions in [17].

The strategy we will use to approach the path integral formalism will not follow Feynman’s.
His elegant approach relies on the double-slit experiment, and physical arguments. Here we
will instead use an, at the outset, conceptually simple approach. The idea is to cut the time-
evolution operator, U(t′, t), which is the generator of time-translation from the state |q, z〉 at
ti = t to the state |q′, z′〉 at tf = t′, into a large number of pieces, and investigate how one

such small piece changes in time. This method is conceptually and mathematically clear, and
it accomodates neatly for spin, which is not treated in Feynman’s book [16]. For the sake
of clarity, we start in section 3.2.1 with just cutting U(t′, t) into two smaller pieces. Section
3.2.2 will then show how to cut U(t′, t) into an arbitrary number of pieces. But first, a short
introduction to the formalism.

3.1 The third formulation of quantum mechanics

The path integral, a formulation of quantum mechanics, was introduced by the late physicist
R.P. Feynman in his now-classic paper from Reviews of Modern Physics, 1948. It stands as a
third formulation of quantum mechanics, besides Schrödingers wave mechanics, and Heisen-
bergs matrix mechanics, both of which the groundwork was laid for in the 1920s. It has been
shown that all three formulations are equivalent. The idea that lead Feynman to formulate
the theory of path integrals, came from a comment Dirac had made about the possibility
of an alternative formulation of quantum mechanics, based on the lagrangian, L, instead of
the hamiltonian, H, of Schrödingers wave mechanics. Dirac argued that the propagator from

13



3.2. General observations

Schrödinger and Heisenberg could be equated with exp (iS/~), where S is the action of the
classical path (which is dependent on the lagrangian), such that1

tf =t′〈q′, z′|U(t′, t)|q, z〉ti=t ∼ exp

(

i

~

∫ t′

t
L(qcl, q̇cl, zcl, żcl)dt

)

,

where U(t′, t) is the time-evolution operator, which, in the case of a time-independent hamil-
tonian, is given by

U(t′, t) = exp

(

− i

~
H(t′ − t)

)

.

Feynman showed that a formulation of quantum mechanics is possible, if we sum all such paths
connecting endstates, and not just the classical [16]. If we imagine cutting the propagator from
the state |q, z〉ti=t to |q′, z′〉tf =t′ intoN infinitely small pieces (and denoting |q, z〉ti=t = |q0, z0〉
and |q′, z′〉tf =t′ = |qN , zN 〉), we may understand the equivalence of Feynmans formulation by

tf =t′〈qN , zN |U(t′, t)|q0, z0〉ti=t ∼
∑

all paths

exp




i

~

N∑

j=1

∫ tj

tj−1

L(qj−1, q̇j−1, zj−1, żj−1)dt



 ,

(3.1)
The summation is over all possible paths connecting the endstates, i.e. an innumerable large
amount of paths! This means that the particle, in going from state |q0, z0〉 to state |qN , zN 〉
takes all the paths that connect them, but with varying probability. This summing over paths
may seem odd and problematic, and is one of the consequences that the path integral formu-
lation of quantum mechanics have both great advantages and several shortcomings. One more
point should be made when discussing the path integral formalism; it neatly accomodates for
classical mechanics. Simply by taking the classical limit ~ → 0, all of classical mechanics is
recovered − a comforting thought. A more thorough discussion of this point, and a proof of
the equivalence of the path integral formalism and Schrödingers and Heisenbergs mechanics
can be found in [18] section 2.5.

3.2 General observations

Considering a particle in the basis |q, z〉, we will, in accordance with Feynmans conjecture
eq.(3.1), be looking for an alternative formulation of what in Dirac-notation is given by

A = 〈q′, z′|U(T, 0)|q, z〉 = 〈q′, z′|e− i
~
HT |q, z〉 ≡ K(q′, z′, T ;q, z, 0), (3.2)

where we have dropped the time-refering subscript. These equations are physically equivalent
to asking the question; ”if a particle starts out in state |q, z〉 at ti = 0, what is then the
probability of finding the particle in the state |q′, z′〉 at time tf = T ?”. In equation (3.2)
we introduced the notation, K(q′, z′, T ;q, z, 0), henceforth called the kernel, which is to be

1According to [18]
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3.2. General observations

understood as the amplitude for going from the state |q, z〉 at ti = 0 to state |q′, z′〉 at tf = T .
At this point we remind ourselves, that there are no path integrals so far. We are still in the
Schrödinger picture, and formally, we are just looking to find the matrix elements of the time
evolution operator, in the basis of |q, z〉.

3.2.1 A first approach to division of the time evolution operator

In order to evaluate the matrix elements, it will prove useful to investigate what happens if
we cut the time evolution operator into two smaller pieces. If T > 0 there must exist some t1
such that 0 < t1 < T . Thus, we can split the time-evolution operator into two smaller pieces,
one going from 0 to t1, and one going from t1 to T . This can be written as

〈q′, z′|U(T, 0)|q, z〉 = 〈q′, z′|e− i
~
HT |q, z〉

= 〈q′, z′|e− i
~
H(T−t1)e−

i
~
H(t1)|q, z〉,

we proceed by inserting a complete set of position-operator eigenstates and a complete set of
spin states

〈q′, z′|e− i
~
H(T−t1)e−

i
~
H(t1)|q, z〉 =

〈q′, z′|e− i
~
H(T−t1)

∫

d3q1|q1〉〈q1|
︸ ︷︷ ︸

= I3×3

∫

dµ(z1)|z1〉〈z1|
︸ ︷︷ ︸

= I2×2

e−
i
~
H(t1)|q, z〉 =

∫

d3q1

∫

dµ(z1)〈q′, z′|e− i
~
H(T−t1)|q1〉|z1〉〈z1|〈q1|e−

i
~
H(t1)|q, z〉 =

∫

d3q1

∫

dµ(z1)K(q′, z′, T ;q1, z1, t1)K(q1, z1, t1;q, z, 0).

(3.3)

If we disregard the integrations, we may interpret this last equation as the amplitude, and
hence probability, for the particle to go from state |q, z〉 at t0 = 0 to state |q′, z′〉 at time tf = T
via the state |q1, z1〉 at time 0 < t1 < T . If we include the integration in our interpretation, we
may understand |q1, z1〉 as being any state, somewhere in between the start and end states.
This seems reasonable − that the particle is in some state with some spin in between the
end states. Figure 3.1 illustrates how we might interpret equation (3.3). Considering only
the kernels, we see that equation (3.3) can be identified as simply the quantum mechanical
probability of two events occurring in succession. In this case, the two events are, that the
particle will at first propagate from state |q, z〉 to state |q1, z1〉, and then propagate to the
state |q′, z′〉.
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3.2. General observations

|q, z〉

|q′, z′〉

|q1, z1〉

t

|q, z〉

U(t1, 0) U(T, t1)

U(T, 0)

t = 0 t1 T

Figure 3.1: Splitting the time evolution operator U(T, 0) into two pieces, U(t1, 0) and
U(T, t1). The dots symbolizes states in H . The black lines connecting the
states can be thought of as the kernels in eq. (3.3), and the thin dotted line is
equivalent to the two integrations over d3q

1
and dµ(z1) in (3.3), meaning that

|q
1
, z1〉 is any state between the endpoints.

3.2.2 The time evolution operator in N divisions

Instead of just cutting U(T, 0) into two smaller pieces, we divide U(T, 0) into some large
number, N , pieces. If we denote ε = T

N , where N ∈ N, then N successive applications of U(ε)
should equal U(T, 0). Formally

A = 〈q′, z′|U(T, 0)|q, z〉 = 〈q′, z′| (U(ε))N |q, z〉 =

〈q′, z′|
(

e−
i
~
Hε
)N

|q, z〉 = 〈q′, z′| e− i
~
Hεe−

i
~
Hε · · · e− i

~
Hε

︸ ︷︷ ︸

N times

|q, z〉
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3.2. General observations

Just as in the previous section, we insert complete states between each successive application
of U(ε). For notational convenience call q′ = qn, z′ = zn, q = q0 and z = z0. Thus,

A = 〈qN , zN | (U(ε))N |q0, z0〉

= 〈qN , zN |e− i
~
Hε

∫

d3qN−1|qN−1〉〈qN−1|
∫

dµ(zN−1)|zN−1〉〈zN−1|

e−
i
~
Hε

∫

d3qN−2|qN−2〉〈qN−2|
∫

dµ(zN−2)|zN−2〉〈zN−2| · · ·

e−
i
~
Hε

∫

d3q1|q1〉〈q1|
∫

dµ(z1)|z1〉〈z1|e−
i
~
Hε|q0, z0〉

=

∫∫

·
∫∫

· · ·
∫∫

d3qN−1dµ(zN−1)d
3qN−2dµ(zN−2) · · · d3q1dµ(z1) ·

〈qN , zN |e− i
~
Hε|qN−1〉|zN−1〉〈zN−1|〈qN−1|e−

i
~
Hε|qN−2〉|zN−2〉 · · · 〈z1|〈q1|e−

i
~
Hε|q0, z0〉

=

∫∫

·
∫∫

· · ·
∫∫

d3qN−1dµ(zN−1)d
3qN−2dµ(zN−2) · · · d3q1dµ(z1) ·

K(qN , zN , T ;qN−1, zN−1, (N − 1)ε)K(qN−1, zN−1, (N − 1)ε;qN−2, zN−2, (N − 2)ε) · · ·
K(q1, z1, 1ε;q0, z0, 0). (3.4)

The last equations are large and unwieldy, but they have an intepretation analogue to eq.
(3.3). Introduce the following notation

∑

all paths

=

N−1∏

j=1

∫

d3qj

N−1∏

j=1

∫

dµ(zj) (3.5)

Apath = K(qN , zN , T ;qN−1, zN−1, (N − 1)ε) · · ·K(q1, z1, 1ε;q0, z0, 0). (3.6)

so that eq. (3.4) can be written as2

A =
∑

all paths

Apath (3.7)

This form clearly emphasizes what is happening: We are summing all the possible paths in
the composite Hilbert space H|q〉 ⊗ H|z〉 connecting the end states |q0, z0〉 and |qN , zN 〉 with
all possible states between, and at each interval we evaluate the kernel for that small time
segment. Figure 3.2 illustrates a possible interpretation of (3.7). Equation (3.7) can be seen
as our analogy to Feynmans original conjecture, in the form of eq. (3.1).

2The idea to recast eq.(3.4) in this manner, is inspired from [19].
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0 ε 2ε · · · · · · (N − 2)ε (N − 1)ε Nε = T

|q, z〉

|q1, z1〉

|q2, z2〉
|qN−2, zN−2〉

|qN−1, zN−1〉

|qN , zN 〉

t

|q0, z0〉

Figure 3.2: Some of the paths that go from |q
0
, z0〉 to |qN , zN 〉, via the states |qj , zj〉,

0 < j < N . As in the case of fig. 3.1, the integration in eq. (3.5) can be
interpreted as the thin dotted lines, symbolizing that |q

1
, z1〉, |q2

, z2〉 . . . can be
any state between the end states.

This chapter started with a very short introduction to the path integral formalism. It is by
no means a thorough discussion, such discussions is given in Feynmans book [16] and Schul-
mans application oriented book [13]. The introduction, however, motivated us to investigate
how we could cut the time-evolution operator into a large number of small pieces, without
choosing a specific path along which the time-evolution operator translates. The result is
given in eq.(3.7), and figure 3.2 gives an illustration of how we might interpret eq. (3.7). The
next logical question to ask ourselves is; how does a kernel as the ones in eq. (3.6) look for a
spin-orbit coupled electron in a magnetic field? This is not a trivial problem to solve, and is
the theme of the next chapter.
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Chapter 4

Evaluating kernels

Calculating a kernel is mathematically equivalent to finding the matrix element of the time-
evolution operator in the basis of |q, z〉. Physically, it means finding an explicit form of how
some state |qj−1, zj−1〉 has changed into a new state |qj , zj〉 in a timespan ε, according to the
time-evolution operator U(ε). Finding one such kernel is by no means trivial, and requires
a lot of algebra. Thus, for the sake of clarity, this chapter is split into five sections. The
first section introduce the problem mathematically, the next two deal with evaluating the part
of the kernel independent of the spin operator σ, the fourth deal with the spin-dependent
elements and finally all these terms will be combined in the last section.

4.1 General remarks on the evaluation of kernels

Recalling the definition of the kernels eq.(3.6) the goal for this chapter is to evaluate terms of
the form

K(qj , zj , jε;qj−1, zj−1, (j − 1)ε) = 〈qj|〈zj |e−
i
~
Hε|qj−1〉|zj−1〉. (4.1)

where the Hamiltonian is given by eq.(2.7) in chapter 2, and can be written as

H = H0 + HSO (4.2)

where

H0 =
(p̂ − qeA)2

2m
+ V (p̂) , HSO = α(p̂ × E) · σ − gµbB · σ.

Thus, eq. (4.1) can be written as

K(qj, zj , jε;qj−1, zj−1, (j − 1)ε) = 〈qj |〈zj |e−
i
~
(H0+HSO)ε|qj−1〉|zj−1〉. (4.3)

We wish to expand the exponential function in (4.3), using that exp(x) = 1+x+ x2

2! + x3

3! + · · · .
Using this expansion to first order in ε yields

〈qj |〈zj |e−
i
~
Hε|qj−1〉|zj−1〉 ≈ 〈qj|〈zj |1 − i

~
H0ε−

i

~
HSOε+ O(ε2)|qj−1〉|zj−1〉

= 〈qj|qj−1〉〈zj |zj−1〉 − 〈qj|〈zj |
i

~
H0ε|qj−1〉|zj−1〉 − 〈qj |〈zj |

i

~
HSOε|qj−1〉|zj−1〉 + O(ε2). (4.4)
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4.1. General remarks on the evaluation of kernels

In equating 〈qj |〈zj |qj−1〉|zj−1〉 with 〈qj|qj−1〉〈zj |zj−1〉 the previously discussed linear inde-
pendence of the subspaces of H was used. This subtle, but very important property, will be
used several times throughout this chapter.

The rest of this chapter will be devoted to calculating an explicit form of three terms in
eq. (4.4). They will be calculated individually in sections 4.1.1, 4.1.2 and 4.1.3 respectively.
Finally, in section 4.2, the result of our labors will be combined into the final explicit form of
one kernel.

4.1.1 Evaluating the inner products

In eq.(4.4) consider first 〈qj|qj−1〉. We know that these states are orthonormal, so that
〈qj |qj−1〉 = δ3(qj − qj−1). However, it will prove useful to use another representation of the
δ-function, which can be found by inserting an identity operator of momentum eigenstates
and recalling the momentum representation of position eigenfunctions (table 2.1),

〈qj|qj−1〉 = 〈qj|
∫ ∞

−∞
d3pj|pj〉〈pj |qj−1〉

=

∫ ∞

−∞

d3pj

(2π~)3
exp

(
iqj · pj/~

)
exp

(
−iqj−1 · pj/~

)

=

∫ ∞

−∞

d3pj

(2π~)3
exp

(
ipj · (qj − qj−1)/~

)
= δ3(qj − qj−1). (4.5)

This is the form of the δ-function which will prove most useful.

The next step is to evaluate 〈zj |zj−1〉. We start out by using the expansion of |zj〉,

|zj〉 = N (zj) exp
(
zjσ

+
)
|↓〉 = N (zj)

(
1 + zjσ

+
)
|↓〉 = N (zj) (|↓〉 + zj|↑〉) ,

and equivalently

〈zj−1| = N (zj−1)
∗〈↓|

(
1 + z∗j−1σ

−
)

= N (zj−1)
(
〈↓| + z∗j−1〈↑|

)
.

The complex conjugate on the normalizing factor have been dropped, since N (z) → N (|z|2).
The overlap 〈zj |zj−1〉 can be found, exploiting that |↓〉 and |↑〉 are orthonormal

〈zj |zj−1〉 = N (zj−1)
(
〈↓| + z∗j−1〈↑|

)
N (zj) (|↓〉 + zj |↑〉)

=
1

√

1 + |zj−1|2
1

√

1 + |zj |2
(
1 + z∗j−1zj

)
. (4.6)

This next part of the derivation requires a lot of expansions, and have therefore been relegated
to appendix D. The result is, that the inner product 〈zj |zj−1〉 can be expressed as

〈zj |zj−1〉 = 1 +
vju̇j − v̇juj

1 + |zj |2
iε, (4.7)
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4.1. General remarks on the evaluation of kernels

where u̇j =
uj−uj−1

ε and terms of higher-than first order in ε have been dropped.

Combining eq.(4.5) and eq.(4.7) allows us to write

〈qj |qj−1〉〈zj |zj−1〉 =

∫ ∞

−∞

d3pj

(2π~)3
exp

(
ipj · (qj − qj−1/~)

)
(

1 +
vju̇j − v̇juj

1 + |zj |2
iε

)

(4.8)

This is the form of the inner products that will be used, when all the terms in eq.(4.4) are
combined.

4.1.2 Evaluating terms independent of spin

Now that the inner products have been calculated, we move on to find the evolution of terms
involving operators in eq.(4.4). This section will deal with the terms in the Hamiltonian
independent of spin, namely

H0 =
(p̂ − qeA)2

2m
+ V (q̂).

Before calculating the elements 〈qj|〈zj | i
~
H0ε|qj−1〉|zj−1〉 in eq.(4.4), some notation will be

introduced. Set

ρ̂ =





ρ̂x

ρ̂y

ρ̂z



 =





p̂x + qeAx

p̂y + qeAy

p̂z + qeAz



 , (4.9)

so that the Hamiltonian can be written as

H0 =
ρ̂2

2m
+ V (q̂).

It can quickly be shown that the |p〉-states are also eigenfunctions of ρ̂, and thus also ρ̂2,

ρ̂|p〉 =





p̂x + qeAx

p̂y + qeAy

p̂z + qeAz



 |p〉 =





p̂x|p〉 + qeAx|p〉
p̂y|p〉 + qeAy|p〉
p̂z|p〉 + qeAz|p〉



 =





px|p〉 + qeAx|p〉
py|p〉 + qeAy|p〉
pz|p〉 + qeAz|p〉





=





px + qeAx

py + qeAy

pz + qeAz



 |p〉 = ρ|p〉, (4.10)

where ρ is a vector with scalar entries. In this notation,

〈qj|〈zj |
i

~
H0ε|qj−1〉|zj−1〉 =

i

~
ε〈qj |〈zj |

(
ρ̂2

2m
+ V (q̂)

)

|qj−1〉|zj−1〉

=
i

~
ε〈zj |zj−1〉〈qj |

(
ρ̂2

2m
+ V (q̂)

)

|qj−1〉. (4.11)
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4.1. General remarks on the evaluation of kernels

From eq. (4.7) we know what the term 〈zj |zj−1〉 will contribute with. The second term can
be evaluated by inserting a complete set of momentum eigenstates, and exploiting the result
of (4.10), that |p〉 is also an eigenstate of ρ̂, and hence also an eigenstate of ρ̂2

〈qj |
(

ρ̂2

2m
+ V (q̂)

)

|qj−1〉 = 〈qj |
(

ρ̂2

2m
+ V (q̂)

)∫

d3pj|pj〉〈pj|qj−1〉 (4.12)

=

∫

d3pj(2π~)−3/2 exp
(
−ipj · qj−1/~

)
〈qj |

(
ρ̂2

2m
+ V (q̂)

)

|pj〉

(4.13)

The term involving the operators ρ̂ and V (q̂) can be evaluated by noting that ρ̂|pj〉 = ρj|pj〉
and 〈qj|V (q̂) =

(
V (q̂)|qj〉

)†
, an equality that is justified because V (q̂) is a hermitian operator.

Exploiting that |qj〉 is an eigenstate of q̂ with eigenvalue qj gives

〈qj |V (q̂) =
(
V (q̂)|qj〉

)†
=
(
V (qj)|qj〉

)†
= 〈qj |V (qj), where qj = (qj,x, qj,y, qj,z).

Equation (4.13) can thus be rewritten as

∫

d3pj(2π~)−3/2 exp
(
−ipj · qj−1/~

)
〈qj|

(
ρ̂2

2m
+ V (q̂)

)

|pj〉 =

∫

d3pj(2π~)−3/2 exp
(
−ipj · qj−1/~

)
〈qj|pj〉

(

ρ2
j

2m
+ V (qj)

)

=

∫

d3pj(2π~)−3 exp
(
ipj · (qj − qj−1)/~

)

(

ρ2
j

2m
+ V (qj)

)

. (4.14)

At this point, we could be tempted to say that this is the correct form of the spin-independent
term (sans the inner product 〈zj |zj−1〉). But in eq. (4.12) we introduced an ambiguity −
the complete set of momentum eigenstates were inserted to the right of H0. Had we instead

inserted the complete set to the left of the H0, it would have yielded
ρ

2
j

2m + V (qj−1) instead of
ρ

2
j

2m + V (qj). This ambiguity can be resolved by introducing the variable q′
j = 1

2(qj + qj−1),
so that eq. (4.14) can be written as

〈qj |
(

ρ̂2

2m
+ V (q̂)

)

|qj−1〉 =

∫

d3pj(2π~)−3 exp
(
ipj · (qj − qj−1)/~

)

(

ρ2
j

2m
+ V (q′

j)

)

.

(4.15)
Plugging equations (4.7) and (4.15) into (4.11) yields

〈qj |〈zj |
i

~
H0ε|qj−1〉|zj−1〉 =

i

~
ε〈zj |zj−1〉〈qj |

(
ρ̂2

2m
+ V (q̂)

)

|qj−1〉 =

i

~
ε

(

1 +
vj u̇j − v̇juj

1 + |zj |2
iε

)∫

d3pj(2π~)−3 exp
(
ipj · (qj − qj−1)/~

)

(

ρ2
j

2m
+ V (q′

j)

)

.
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But, the expansion is only to first order in ε, so higher order terms should be dropped. Doing
so, and recalling the definition of ρ (eq. (4.9)) yields the final result of this section

〈qj |〈zj |
i

~
H0ε|qj−1〉|zj−1〉 =

i

~
ε

∫

d3pj
1

(2π~)3
e(ipj ·(qj−qj−1)/~)

((
pj − qeA

)2

2m
+ V (q′

j)

)

(4.16)

4.1.3 Evaluating terms dependent of spin

The goal is now to find the terms dependent of spin. Recall that the spin-orbit part of the
Hamiltonian, HSO, is given by

HSO = α(p̂ × E) · σ − gµbB · σ. (4.17)

Note here, that the electric and magnetic field are both independent of position, momentum
and spin polarization. We will combine the two terms such that in the following, we look for
matrix elements of the time-evolution operator with a Hamiltonian of the form

HSO = (α(p̂ × E) − gµbB) · σ.

Thus, according to eq.(4.4), we are looking for the elements

〈qj |〈zj |
i

~
εHSO|qj−1〉|zj−1〉 =

i

~
ε〈qj |〈zj |(α(p̂ × E) − gµbB) · σ|qj−1〉|zj−1〉

=
i

~
ε〈qj |(α(p̂ × E) − gµbB)|qj−1〉 · 〈zj |σ|zj−1〉 (4.18)

In the last step we once again exploited the linear independence of the |q〉 and |z〉-subspaces of
H . The evaluation of the term involving momentum eigenstates requires no other techniques
than those applied in the previous section. The algebra is lengthy, and as a consequence, is
relegated to appendix E. The result is, that

〈qj|(α(p̂ × E) − gµbB)|qj−1〉 = Γj

∫
d3pj

(2π~)3
exp

(
ipj · (qj − qj−1)/~

)
, (4.19)

where

Γj =





α [pj,yEz − pj,zEy] − gµbBx

α [pj,zEx − pj,xEz] − gµbBy

α [pj,xEy − pj,yEx] − gµbBz



 . (4.20)

Returning to eq. (4.18) there is now only one term left, the one involving Pauli spin
matrices,

〈zj |σ|zj−1〉. (4.21)

The explicit form of the Pauli spin matrices is

σ = (σx, σy, σz) =

[(
0 1
1 0

)

,

(
0 −i
i 0

)

,

(
1 0
0 −1

)]

,
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4.2. Combination of terms

So calculating eq. (4.21) is just matrix and vector multiplication en masse. The x-part is

〈zj |σx|zj−1〉 = N (zj)
∗N (zj−1)(〈↓| + z∗j 〈↑|)

(
0 1
1 0

)

(|↓〉 + zj−1|↑〉)

= N (zj , zj−1)
[
(0 1) + z∗j (1 0)

]
(

0 1
1 0

)[(
0
1

)

+ zj−1

(
1
0

)]

= N (zj , zj−1)
(
z∗j + zj−1

)
.

Once again, the complex conjugation on the normalization factor have been dropped, and
the two normalization factors have been combined into the composite factor N (zj , zj−1).
Analogous calculations for the y and z-parts yield

〈zj |σy|zj−1〉 = N (zj , zj−1)
(
−iz∗j + izj−1

)

〈zj |σz|zj−1〉 = N (zj , zj−1)
(
−1 + z∗j zj−1

)
.

And thus

〈zj |σ|zj−1〉 = N (zj , zj−1)





z∗j + zj−1

−iz∗j + izj−1

−1 + z∗j zj−1



 = N (zj , zj−1)Z(zj , zj−1), (4.22)

where the vector Z have been introduced. Combining (4.19) and (4.22) with eq. (4.18), we
arrive at

i

~
ε〈qj|(α(p̂ × E) − gµbB)|qj−1〉 · 〈zj |σ|zj−1〉 =

i

~
ε

∫
d3pj

(2π~)3
eipj ·(qj−qj−1)/~N (zj , zj−1)Z(zj , zj−1) · Γj

(4.23)

4.2 Combination of terms

In sections 4.1.1, 4.1.2 and 4.1.3 the three terms in eq. (4.4) were calculated. Plugging
equations (4.8), (4.16) and (4.23) into (4.4) gives

〈qj|qj−1〉〈zj |zj−1〉 − 〈qj |〈zj |
i

~
H0ε|qj−1〉|zj−1〉 − 〈qj |〈zj |

i

~
HSOε|qj−1〉|zj−1〉 + O(ε2)

=

∫
d3pj

(2π~)3
eipj(qj−qj−1/~)

(

1 +
vju̇j − v̇juj

1 + |zj |2
iε

)

− i

~
ε

∫
d3pj

(2π~)3
eipj ·(qj−qj−1)/~ ·

((
pj − qeA

)2

2m
+ V (q′

j)

)

− i

~
ε

∫
d3pj

2π~
eipj ·(qj−qj−1)/~N (zj , zj−1)Z(zj , zj−1) · Γj + O(ε2)

=

∫
d3pj

(2π~)3
e(ipj ·(qj−qj−1)/~)

[

1 +

(

vj u̇j − v̇juj

1 + |zj |2
~ −

(
pj − qeA

)2

2m
− V (q′

j)

−N (zj , zj−1)Z(zj , zj−1) · Γj

)

i

~
ε+ O(ε2)

]

. (4.24)
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4.2. Combination of terms

For the sake of clarity, we re-introduce the notation of the Hamiltonian, but now its a number,
and not an operator, such that

H(qj ,pj , zj) =

(
pj − qeA

)2

2m
+ V (q′

j) + N (zj , zj−1)Z(zj , zj−1) · Γj.

Introducing this notation into eq. (4.24) and recasting the term in brackets back into expo-
nential form yields

∫
d3pj

(2π~)3
e(ipj ·(qj−qj−1)/~)

[

1 +

(
vju̇j − v̇juj

1 + |zj |2
~ −H(qj ,pj , zj)

)
i

~
ε+ O(ε2)

]

≈

∫
d3pj

(2π~)3
e(ipj ·(qj−qj−1)/~) exp

[(
vj u̇j − v̇juj

1 + |zj |2
~ −H(qj ,pj , zj)

)
i

~
ε

]
(
1 + O(ε2)

)
=

∫
d3pj

(2π~)3
exp

[(
pj · (qj − qj−1)

ε
+
vj u̇j − v̇juj

1 + |zj |2
~ −H(qj,pj, zj)

)
i

~
ε

]
(
1 + O(ε2)

)
=

∫
d3pj

(2π~)3
exp

[(

pjq̇j +
vj u̇j − v̇juj

1 + |zj |2
~ −H(qj,pj, zj)

)
i

~
ε

]
(
1 + O(ε2)

)
, (4.25)

where q̇j =
qj−qj−1

ε .

We have reached the goal for this chapter, which is the evaluation of a kernel in the ”sum
over paths”-equation (3.7). This chapter started by expanding the exponential function that
appears in one kernel, and calculating the three resulting terms in sections 4.1.1, 4.1.2 and
4.1.3. In section 4.2 the three terms were combined, and it was shown that one kernel in eq.
(3.7) is given as

K(qj , zj , jε;qj−1, zj−1, (j − 1)ε) =
∫

d3pj

(2π~)3
exp

[(

pj q̇j +
vj u̇j − v̇juj

1 + |zj |2
~ −H(qj ,pj , zj)

)
i

~
ε

]
(
1 + O(ε2)

) (4.26)

Now the we have found an explicit form of one kernel for our spin-orbit coupled electron, the
theme for the next chapter will be, in accordance with eq. (3.7) to combine N such terms,
and finally taking the contiuum limit N → ∞. This will finally give the path integral for a
spin-orbit coupled particle.
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Chapter 5

A complete path integral for the

spin-orbit interaction

We are now in a position to calculate what we set out to, back in chapter 3 − finding the sum
over all paths in eq. (3.7). Chapter 4 showed what one kernel contributes with in eq. (4.25),
and thus, according to eq. (3.7) this chapter will deal with combining N such terms. Since
we are physically interested in being able to describe any path from state |q0, z0〉 to state
|qN , zN 〉, and not just a discrete, the continuum limit N → ∞ will be calculated. Finally,
some facets of the semi-classical approach to solving path integrals for spin-dependent systems
will be discussed.

5.1 The amplitude

Recall the definition of the amplitude eq. (3.7)

A =
∑

all paths

Apath.

For the sake of clarity, we start by calculating just two terms in Aall paths, eq. (3.6),

K(qj , zj , jε;qj−1, zj−1, (j − 1)ε) ·K(qj−1, zj−1, (j − 1)ε;qj−2, zj−2, (j − 2)ε)

=

∫
d3pj

(2π~)3
exp

[(

pj q̇j +
vj u̇j − v̇juj

1 + |zj |2
~ −H(qj ,pj , zj)

)
i

~
ε

]
(
1 + O(ε2)

)
·
∫
d3pj−1

(2π~)3
·

exp

[(

pj−1q̇j−1 +
vj−1u̇j−1 − v̇j−1uj−1

1 + |zj−1|2
~ −H(qj−1,pj−1, zj−1)

)
i

~
ε

]
(
1 + O(ε2)

)

=

∫
d3pj

(2π~)3

∫
d3pj−1

(2π~)3
exp

[(

pjq̇j +
vj u̇j − v̇juj

1 + |zj |2
~ −H(qj,pj, zj) +

pj−1q̇j−1 +
vj−1u̇j−1 − v̇j−1uj−1

1 + |zj−1|2
~ −H(qj−1,pj−1, zj−1)

)
i

~
ε

]
(
1 + O(ε2)

)2
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5.1. The amplitude

=

j
∏

k=j−1

∫
d3pk

(2π~)3
exp





j
∑

k=j−1

(

pkq̇k +
vku̇k − v̇kuk

1 + |zk|2
~ −H(qk,pk, zk)

)
i

~
ε




(
1 + O(ε2)

)2
.

Generalizing this result to all the N terms in Apath thus gives

N−1∏

j=0

∫
d3pj

(2π~)3
exp





N−1∑

j=0

(

pj q̇j +
vju̇j − v̇juj

1 + |zj |2
~ −H(qj ,pj , zj)

)
i

~
ε




(
1 + O(ε2)

)N
. (5.1)

We introduce the product of integrals in the above equation into
∑

all paths such that

∑

all paths

=

N−1∏

j=1

∫

d3qj

N−1∏

j=1

∫

dµ(zj)

N−1∏

j=0

∫
d3pj

(2π~)3

Apath = exp





N−1∑

j=0

(

pj q̇j +
vj u̇j − v̇juj

1 + |zj |2
~ −H(qj ,pj , zj)

)
i

~
ε



 .

Note in this equation that there are only position- and spinintegrals for intermediate position
(N − 1 total), whereas there are momentum integrals for each interval (N total). We have
thus arrived at the final form of the amplitude for a particle to go in discrete steps from state
|q0, z0〉 to state |qN , zN 〉 via any position and spin state in between, namely

A =
∑

all paths

Apath =
N−1∏

j=1

∫

d3qj

N−1∏

j=1

∫

dµ(zj)
N−1∏

j=0

∫
d3pj

(2π~)3

exp





N−1∑

j=0

(

pjq̇j +
vju̇j − v̇juj

1 + |zj |2
~ −H(qj,pj, zj)

)
i

~
ε




(
1 + O(ε2)

)N
. (5.2)

5.1.1 Continuum limit

Real physical particles do not change in discrete steps from one state to another, they change
continuously. As a consequence, we investigate the continuum limit. This limit can be ap-
proached by cutting U(T, 0) into infinitely many small segments and mathematically, this is
equivalent to taking the limit as N → ∞ in (5.2).

In this limit the summation in (5.2) turns, despite a few mathematical details, into a
Riemann integral over the continuous parameter t with the limiting values 0 < t < T , and the
discrete points qj,pj are replaced by functions over t, in the sense that qj → q(t), pj → p(t),
i.e.

lim
N→∞

N−1∑

j=0

pjqj ∼
∫ T

0
p(t)q(t)dt.

If we once again (recall the discussion in appendix D) make the assumption that as N → ∞
then zj−1 → zj , and replace the discrete indices with functions of t, the vector N (zj , zj−1)Z(zj , zj−1)
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5.1. The amplitude

in H(qj,pj, zj) reduces to

lim
N→∞

N (zj , zj−1)Z(zj , zj−1) = lim
zj−1→zj

N (zj , zj−1)Z(zj , zj−1) =
1

1 + |z(t)|2





2u(t)
−2v(t)

−1 + |z(t)|2



 .

The error term (1 +O(ε2))N will tend to unity, since ε→ 0 as N → ∞. Thus, the continuous
form of eq. (5.2) is

lim
N→∞

A = lim
N→∞

N−1∏

j=1

∫

d3q(tj)

N−1∏

j=1

∫

dµ(z(tj))

N−1∏

j=0

∫
d3p(tj)

(2π~)3

exp

[
i

~

∫ T

0
dt

(

p(t)q̇(t) +
v(t)u̇(t) − v̇(t)u(t)

1 + |z(t)|2 ~ −H(q(t),p(t), z(t))

)]

(5.3)

where

H(q(t),p(t), z(t)) =
(p(t) − qeA)2

2m
+ V (q′(t)) +

1

1 + |z(t)|2





2u(t)
−2v(t)

−1 + |z(t)|2



 · Γ(t), (5.4)

and the vector Γ(t) is given by

Γ(t) =





α [py(t)Ez − pz(t)Ey] − gµbBx

α [pz(t)Ex − px(t)Ez ] − gµbBy

α [px(t)Ey − py(t)Ex] − gµbBz



 .

It is customary to introduce a special notation in this context. Let

D[q]D[p]Dµ[z] = lim
N→∞

N−1∏

j=1

d3q(tj)

N−1∏

j=1

dµ(z(tj))

N−1∏

j=0

d3p(tj)

(2π~)3
, (5.5)

so that eq. (5.3) can be written as

lim
N→∞

A =

∫

D[q]

∫

D[p]

∫

Dµ[z] exp

(
i

~
S(p,q, z, t)

)

(5.6)

where

S(p,q, z, t) =

∫ T

0
dt

(

p(t)q̇(t) +
v(t)u̇(t) − v̇(t)u(t)

1 + |z(t)|2 ~ −H(q(t),p(t), z(t))

)

,

and H(q(t),p(t), z(t)) is given by eq. (5.4). Equations (5.6), (5.5) and (5.4) is the path

integral for a Rashba spin-orbit coupled particle. It is a summation (integration) over all the
possible states connecting |q0, z0〉 and |qN , zN 〉 in the 6 + 2-dimensional extended phasespace
H . It is important to emphasize that eq. (5.6) is just a shorthand notation for the more
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5.2. The semi-classical approximation

ominous eq. (5.3), in all practical manners, we are forced to use eq. (5.3). We have so far
not dealt with normalizability of these functionals, and at the outset eq. (5.6) does not look
nearly normalizable - each of the N integrals are not even convergent. Some methods exist
for ensuring an ad hoc convergence of the q and p integrals, but for hamiltonians of our type,
this method is not sufficient1. Despite this grave difficulty, there exists a course of action, that
allows us to approach eq. (5.6), the semi-classical approximation.

5.2 The semi-classical approximation

For the sake of argument, we only investigate the semi-classical approximation for the spin-
dependent part of eq. (5.6), so that the integral in eq. (5.6) reduces to

lim
N→∞

∫

Dµ[z] exp

(
i

~
S(u(t), v(t))

)

, (5.7)

where

S(u(t), v(t)) =

∫ T

0
dt

(
v(t)u̇(t) − v̇(t)u(t)

1 + |z(t)|2 ~ −H(z(t))

)

.

The explicit time-dependence is for notational convenience dropped, and we note that S(u, v)
can be recast in terms of z and z∗,

z∗ż − zż∗ = 2i(v̇u− vu̇) ⇔ vu̇− v̇u =
i

2
(z∗ż − zż∗) ,

so that eq. (5.7) can be written as

lim
N→∞

∫

Dµ[z] exp

(
i

~

∫ T

0
dt

[
i

2

(z∗ż − zż∗)

1 + |z|2 ~ −H(z, z∗)

])

= lim
N→∞

∫

Dµ[z] exp

(
i

~
S(z, z∗)

)

.

(5.8)
Paths that make exp( i

~
S(z, z∗)) oscillate quickly will tend to cancel, and therefore the dom-

inant contribution to the path integral in eq. (5.8) will come from paths that do not make
the exponential function fluctuate to quickly. Mathematically, this path is the one that makes
the action functional S(z, z∗) stationary, and physically, it is the classical path, that obeys
Hamiltons principle δS = 0. This gives us the two equations of motion

∂S
∂z∗

= 0 and
∂S
∂z

= 0. (5.9)

Before calculating these equations of motion, we assume periodic boundary conditions,

z(T + t) = z(t), z∗(T + t) = z∗(t) and ż(T + t) = ż(t), ż∗(T + t) = ż∗(t)

1The ad hoc convergence can be achieved by inserting an exponentially damping factor e
−iγq(t)2 or e

−iγp(t)2 ,
which turns our integrals into gaussians. Gaussian integrals can be solved analytically, and finally the limit
γ → 0 can be taken.

29



5.2. The semi-classical approximation

which allows us to move the derivative from ż∗ to z in eq. (5.8), if we switch the sign, so that
the action in (5.8) can be written as

S(z, z∗) =

∮ T

0
dt

[

i~
żz∗

1 + |z|2 −H(z, z∗)

]

Using this form of the action, the first equation of motion in eq. (5.9) can be calculated as

∂S
∂z∗

=
∂

∂z

(
i

2

(z∗ż − zż∗)

1 + |z|2 ~ −H(z, z∗)

)

=
∂

∂z∗

(

i
żz∗

1 + |z|2 ~ −H(z, z∗)

)

= 0 ⇔

i~

(
ż

1 + |z|2 − żz∗

(1 + |z|2)2 z
)

+
∂H(z, z∗)

∂z∗
= i~

(
(1 + |z|2) − |z|2

(1 + |z|2)2
)

ż − ∂H(z, z∗)

∂z∗
= 0 ⇔

ż =
(1 + |z|2)2

ı~

∂H(z, z∗)

∂z∗
. (5.10)

Parallel calculations for z yields

ż∗ = −(1 + |z|2)2
i~

∂H(z, z∗)

∂z
(5.11)

These are the equations of motion for z and z∗, which define the classical orbits. If we solve
these in terms of z and z∗ we find the classical paths, denoted by zcl and z∗cl respectively. So
far, we have just treated this as a classical rotating sphere, where z and z∗ can be recast into
spherical coordinates using appendix B. However, if we introduce a new path, as the variation
from the classical path

(ξ, ζ) = (z − zcl, z
∗ − z∗cl),

we can rewrite the action as

S(ζ, ξ) = Scl(zcl, z
∗
cl) + S(2)(ξ, ζ).

The second variation of the action S(2)(ξ, ζ) can be interpreted as the quantum fluctuations
around the classical orbit. The second variation is thus the quantum mechanical contribution
to the propability, since in a purely classical system all higher-order than zeroth order varia-
tions vanish. The explicit calculation of S(2)(ξ, ζ) is not trivial, but it is quadratic, and hence
analytically solvable, see [20, 21]. Numerical calculations can be found in [12].

It should be noted however, that there are several severe difficulties with this approxi-
mation. If we only consider the classical action, equations (5.10) and (5.11) do not yield a
correct description, in the sense that it does not agree with a full Hamiltonian treatment
[22]. A further discussion of this discrepancy and a technique for circumventing it (Klaud-
ers ε-prescription) can be found in [22]. However, if we include the second variation, these
calculations provide satisfactory agreement with a Hamiltonian treatment [15].
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Chapter 6

Conclusion

This thesis introduced the spin-orbit interaction, which arises as a relativistic consequence
of the electric fields exerted by the nucleii on electrons. We moved on to a discussion of
the basis states used to describe a Hamiltonian with spin-dependent elements, |q〉 and |z〉,
and the Hilbert-space H spanned by the composition of H|q〉 and H|z〉, followed. Once
these prerequisites had been covered, we formally introduced the path integral formulation
of quantum mechanics. The treatment of the path integral formalism urged us to investigate
what happens, if the time-evolution operator from Hamiltonian-based quantum mechanics, is
”cut” into a large number N smaller parts. It turned out, that we could interpret the result
of such a time-cutting as a sum over all the paths, in the Hilbert space of position and spin
states |q, z〉, connecting the initial and final state, denoted by |q0, z0〉 and |qN , zN 〉. Instead
of trying to compute the full propagation, the problem could thus be reduced to finding one

of the N propagators. The detailed calculation proved labourous, and the inclusion of spin
in the problem, had several important consequences for these calculations. However, a closed
form of one kernel was found, and according to the introduction to path integral formalism,
N such terms were combined to obtain a discrete description of propagation from the initial
to the final state. The result of taking the continuum limit N → ∞ was found, which finally
gave the path integral formulation of a Rashba spin-orbit coupled particle. The final formula
is not easy to interpret, but the semi-classical approximation was introduced as a means to
approach it.

6.1 Perspectives

After arriving at a path integral formulation of the spin-orbit interaction, and seeing eq.
(5.6) one might be left with a feeling of ”What now?”. Returning to the notion of quantum
computing introduced in chapter 2, we are in principle looking to control the spin of an
electron. An example of such ”control” could be the calculation of the time necessary to force
a complete spin flip for an electron confined to a 0D well for a given magnetic field (the strength
of which we control). Equation (5.6) does not look too inviting in treating this problem, and
it is by no means the most approachable formula. As it turned out, (5.6) failed already
at analytical solutions in the classical limit of a semiclassical approximation. A technique
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6.2. Omissions

known as Klauders ε-prescription exists, that in certain special cases, can provide satisfactory
results, that work in the semiclassical limit. An interesting account of this technique with
special applications to discrete and continuous forms of the path integral (equations (5.2) and
(5.6)) can be found in [22]. However, the bottom line is, that in almost all practical manners
application of eq. (5.6) requires numerical treatments. Such a numerical treatment can be
found in [12], and these calculations, could prove to be superior to a numerical treatment of
a full Hamiltonian description.

6.2 Omissions

Although this thesis have tried to provide an introduction to the spin-orbit interaction, the
path integral formalism and a comprehensive examination of the steps needed to describe
the spin-orbit interaction in this formalism, several facets of all three subjects have been left
out. The spin-orbit interaction is very important when describing atomic spectra, and have
several suprising physical consequences. A discussion of these can be found in [18, 23]. We
only mentioned that the states |z〉 are somehow related to the SU(2)-group. It turns out, that
|z〉 are SU(2) coherent states, which can be utilised in many ways, see [14]. One example, is
that the measure dµ(z) arises naturally as a consequence of the link between |z〉 and SU(2)!
Our discussion of the path integral only touched upon two of the many philosophical and
physical consequences of the formalism. One fundamental question was not discussed ”How
are we to inerpret that a particle takes all the paths, even the most unlikely, between the

endpoints?”. It is a very relevant question, and the standard reference on these discussions
is still Feynman’s book [16]. Schulman’s more modern approach [13], uses the formalism in
some very interesting cases. Likewise, we only introduced the the semi-classical theory, and
presented how one might continue with eq. (5.6), [24, 22, 15] and [21] discusses the semi-
classical approximation in greater detail.
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Appendix A

Calculation of energy from torque

From classical mechanics, it is known that the energy of a rotating rigid body can be found
from its torque by

U = −
∫ θ

θ0

dθτ (θ) (A.1)

where θ0 is the angle at which we set the zero-point for the energy. Orienting our coordinate
system such that B = (0, 0, B) and µ = (0, µ, 0), and changing to polar coordinates, gives a
torque given by

µ ×B = −x̂µB sin θ cosϕ

Without loss of generality, we set ϕ = 0. Plugging into eq. (A.1)

U = −
∫ θ

θ0

dθ (−µB sin θ)

= − (cos θ − cos θ0)µB

= cos θµB = −µ · B.

In the last equation it was exploited that θ0 was defined as the zero-point energy, and therefore
dropped. Finally re-introducing the effective magnetic field that the electron feels, gives the
final result

U = −µ · Beff

= −
(
ge

2me

)

S · B +

(
ge

2m2
ec

2

)

S · (p× E)
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Appendix B

Spin states in spherical coordinates

The |z〉-states can also be represented in spherical coordinates. This has been avoided in
the main body of the thesis, since it would only clutter notation. This appendix will show
the relationship between the the complex number z = u + iv appearing in |z〉 and the polar
coordinates ϕ, θ. First recall the definition of |z〉

|z〉 = N (z) (|↓〉 + z|↑〉) =
1

√

1 + |z|2

(
u+ iv

1

)

. (B.1)

A generic 2-dimensional spin-state, can in spherical coordinates be written as

χ(θ, ϕ) =

(
cos θ

2e
iϕ/2

sin θ
2e

−iϕ/2

)

. (B.2)

Two examples suffice to show that this equation gives the correct spinors in the x, y, z-
directions. In accordance with the definition of spherical coordinates, the values θ = 0 and
ϕ = 0 should yield spin up in the z-direction, and the values θ = π

2 and ϕ = π should yield
spin down in the x-direction

χ(θ = 0, ϕ = 0) =

(
cos 0

2e
i·0

sin 0
2e

−i·0

)

=

(
1
0

)

, χ(θ = π/2, ϕ = π) =
1√
2

(
1
−1

)

,

which agrees with the litterature [9]. Equating (B.1) and (B.2) and plugging in a physically
irrelevant phase-factor yields

1
√

1 + |z|2

(
u+ iv

1

)

=

(
cos θ

2e
iϕ/2

sin θ
2e

−iϕ/2

)

· eiϕ/2 = sin θ/2

(
cos θ/2
sin θ/2 e

iϕ

1

)

.

This gives the two equations

u+ iv = cot
θ

2
eiϕ. (B.3)

1
√

1 + |z|2
= sin

θ

2
(B.4)
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With the aid of elementary trigonometry, equation (B.3) yields the two equations

cot
θ

2
= |z| ⇔ θ = 2 · cot−1

(√

u2 + v2
)

, (B.5)

eiϕ = eiArg(z) ⇔ ϕ = tan−1
(u

v

)

. (B.6)

For consistency, we check that these two equations agree with eq. (B.4). Using the trigono-
metric identity

sin θ/2 =
1

√

1 + cot θ/2

and inserting eq. (B.5)

sin θ/2 =
1

√

1 + cot θ/2
=

1
√

1 + |z|
we see the consistency with eq. (B.4). From these calculations, it is clear why the states |z〉
have been expressed in terms of (u, v) instead of (θ, ϕ)
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Appendix C

Completeness of spin states

In this appendix we are interested in showing that
∫

|z〉〈z|dµ(z) = I2×2 (C.1)

using ∫

dµ(z) =

∫
2

π

1

(1 + |z|2)2 d
2z =

∫ ∞

−∞

∫ ∞

−∞

2

π

1

(1 + |z|2)2 d(Rez)d(Imz).

The proof only requires algebra. Simply writing out what eq. (C.1) means, yields
∫

|z〉〈z|dµ(z) =

∫

|N (z)|2 (|↓〉 + z|↑〉) (〈↓| + z∗〈↑|) dµ(z)

=

∫
1

1 + |z|2
(
z
1

)

(z∗ 1) dµ(z)

=

∫
1

1 + |z|2
(

|z|2 z
z∗ 1

)

dµ(z)

=

∫ ∞

−∞

∫ ∞

−∞

2

π

1

(1 + |z|2)3
(

|z|2 z
z∗ 1

)

d(Rez)d(Imz).

The off-diagonal elements in the matrix are zero as a consequence of parity, since

2

π

∫ ∞

−∞

∫ ∞

−∞

1

(1 + |z|2)3
︸ ︷︷ ︸

even

z
︸︷︷︸

odd

d(Rez)d(Imz) = 0. (C.2)

Because z depends linearly on Rez and Imz, an even-ness or odd-ness in z will result in an
even-ness og odd-ness in Rez and Imz, and hence the integrals will evaluate to zero. Naturally,
this result also holds for z∗. The diagonal elements can be found by using polar coordinates,

2

π

∫ ∞

−∞

∫ ∞

−∞

1

(1 + |z|2)3 |z|
2d(Rez)d(Imz) =

2

π

∫ 2π

0
dφ

∫ ∞

0

R2

(1 +R2)3
·RdR

2

π
· 2π · 1

4
= 1. (C.3)
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Where it has been used that
∫∞
0 x3/(1 + x2)3dx = 1/4. Analogous calculations for the lower

right term gives

2

π

∫ ∞

−∞

∫ ∞

−∞

1

(1 + |z|2)3d(Rez)d(Imz) =
2

π

∫ 2π

0
dφ

∫ ∞

0

1

(1 +R2)3
·RdR

2

π
· 2π · 1

4
= 1. (C.4)

and the integral
∫∞
0 1/(1 + x2)3dx = 1/4 was used. Combining the results of equations (C.2),

(C.3) and (C.4) gives
∫

|z〉〈z|dµ(z) =

[
1 0
0 1

]

and thus, the completeness ∫

|z〉〈z|dµ(z) = I2×2,

has been shown.
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Appendix D

Expansion of spin states

In this appendix we are interested in calculating what the term 〈zj |zj−1〉 will contribute with,
to the expansion of the Hamiltonian. We know from eq. (4.6) that the overlap between two
states is

〈zj |zj−1〉 =
1

√

1 + |zj−1|2
1

√

1 + |zj |2
(
1 + z∗j−1zj

)
. (D.1)

Now note, that the difference between to succesive z’s can be expressed as

zj − zj−1 ∝ ∆.

Using this, eq. (D.1) can be rewritten as

1
√

1 + |zj − ∆|2
1

√

1 + |zj |2
(1 + (zj − ∆)∗ zj) =

1 + (zj − ∆)∗ zj
√

1 + |zj − ∆|2
√

1 + |zj |2
.

Using the approximation (1 + x)n ≈ 1 + nx+ O(x2), the above equation will, setting ∆ = 0
in denominator, to first order in ∆ in the nominator give

1 + (zj − ∆)∗ zj
√

1 + |zj − ∆|2
√

1 + |zj |2
≈ ∆∗zj

1 + |zj |2

Recasting the denominator, dropping higher-than first order terms, and setting ∆ = 0 in the
nominator, yields to first order in ∆ in the denominator

1 + (zj − ∆)∗ zj
√

1 + |zj − ∆|2
√

1 + |zj |2
=

1 + |zj |2
√

1 + |zj |2 + |∆|2 + zj∆∗ + z∗j ∆
√

1 + |zj |2

=
1 + |zj |2

√
(

1 +
zj∆∗+z∗j ∆

(1+|zj |2)

)

(1 + |zj |2)
√

1 + |zj |2
=

1
√
(

1 +
zj∆∗+z∗j ∆

(1+|zj |2)

)

≈
(

1 +
zj∆

∗ + z∗j ∆

2(1 + |zj |2)

)−1

≈ 1 −
zj∆

∗ + z∗j ∆

2(1 + |zj |2)
.
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Thus, the complete expansion is

(1 + (zj − ∆)∗ zj)
√

1 + |zj − ∆|2
√

1 + |zj |2
≈ 1 − 1

2

zj∆
∗ + z∗j ∆

1 + |zj |2
+

zj∆
∗

1 + |zj |2
+ O(∆2)

= 1 +
zj∆

∗ − z∗j ∆

2(1 + |zj |2)
+ O(∆2). (D.2)

Note here, that ∆, by assumption, is a very small number, because, physically, the size of ∆
can be controlled by cutting the time-evolution operator into an appropriate amount of pieces
by increasing or decreasing N . In the limit N → ∞, our physical intuition would expect
∆ to be an infinitesimal small number, since it represents a very small change of state, and
thus allowing us to drop terms of order O(∆2). However, mathematically this is not obvious
- the |z〉 states are not orthogonal, so we have no mathematical justification, for saying that
∆ goes continuously to zero as N → ∞. This is a serious problem, and the only justification
is, that in the end, this method gives the correct result, i.e. tangent with what Schrödingers
formulation yields. This has been thoroughly discussed in the litterature, see [15]. With this
complication in mente, we drop O(∆2) and introduce the variable żj = ∆

ε =
zj−zj−1

ε , so that
eq. (D.2) can be recast as

1 +
zjεż

∗
j − z∗j εżj

2(1 + |zj |2)
.

Recalling the definition of zj = uj + ivj the nominator can be rewritten as

1 +
(2vj u̇j − 2v̇juj) iε

21 + |zj |2)
= 1 +

vj u̇j − v̇juj

1 + |zj |2
iε, (D.3)

which is the form used in the calulation of a single kernel in section 4.1.1.
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Appendix E

Evaluation of terms involving

momentum operators in

spin-dependent Hamiltonian

The goal of this appendix is to evaluate the terms involving momentum eigenstates in eq.
(4.18). First, some new notation will need introducing. Recall that HSO = (α(p̂ × E) − gµbB)·
σ. Writing out the cross-product yields

(α(p̂ × E) − gµbB) = (α [p̂yEz − p̂zEy] − gµbBx) x̂ +

(α [p̂zEx − p̂xEz] − gµbBy) ŷ +

(α [p̂xEy − p̂yEx] − gµbBz) ẑ

≡ (Γ̂x, Γ̂y, Γ̂z) = Γ̂. (E.1)

The vector Γ̂ has the three operator Γ̂x, Γ̂y and Γ̂z as its entries. Thus, the spin-dependent
part of the hamiltonian can be written as

HSO = Γ̂ · σ.

In this notation, this appendix aims at calculating

〈qj|Γ̂|qj−1〉 = 〈qj|(Γ̂x, Γ̂y, Γ̂z)|qj−1〉,

Only one term, Γ̂x, will be calculated in detail. The other two will follow from permutations
of the indices. Recalling the explicit form of the Γ̂x-operator, eq.(E.1), the problem has thus
been reduced to finding

〈qj |Γ̂x|qj−1〉 = 〈qj | (α [p̂yEz − p̂zEy] − gµbBx) |qj−1〉.

This is exactly, apart from some scalars, what we’ve already calculated in section 4.1.1, when
the matrix elements of the time evolution operator for the spin-independent part of the hamil-
tonian were found. For this reason, it is natural to use the same recipe here, as in section
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4.1.1. Insert complete momentum representation eigenstates and exploit that these are eigen-
functions of p̂y and p̂z respectively. Since Ey, Ez and Bx are just scalar numbers, they will
have no effect on the bra’s and ket’s, so

〈qj| (α [p̂yEz − p̂zEy] − gµbBx) |qj−1〉

= 〈qj|
∫

d3pj (α [p̂yEz − p̂zEy] − gµbBx) |pj〉〈pj|qj−1〉

=

∫

d3pj〈qj |pj〉 (α [pj,yEz − pj,zEy] − gµbBx) 〈pj |qj−1〉 (E.2)

=

∫

d3pj〈qj |pj〉Γj,x(pj,z, pj,y, Ez, Ey, Bx)〈pj |qj−1〉. (E.3)

In eq. (E.2) the momentum operator operated on its eigenfunctions, and produced its eigen-
values, pj,y and pj,z. Thus, all the terms were reduced to simple scalars, and have been
recombined into the new constant Γj,x(pj,z, pj,y, Ez , Ey, Bx) ≡ Γj,x in eq. (E.3), where the hat
have been dropped, to signify that Γj,x is now just a number, and not an operator.

It is reasonable to assume that analogue calculations on Γ̂y and Γ̂z will yield the same
results, except for a cyclic permutation of the indices. Thus

〈qj |Γ̂|qj−1〉 = 〈qj |(Γ̂x, Γ̂y, Γ̂z)|qj−1〉 =

∫

dpj〈qj |pj〉〈pj |qj−1〉 (Γj,x,Γj,y,Γj,z)

≡ Γj

∫

dpj〈qj|pj〉〈pj|qj−1〉, (E.4)

where the vector Γj with the scalar entries (Γj,x,Γj,y,Γj,z) have been introduced. Recalling
from eq.(4.5) that 〈qj|pj〉〈pj|qj−1〉 = (2π~)−3eipj ·(qj−qj−1)/~, (E.4) can be recast as

〈qj |Γ̂|qj−1〉 = Γj

∫
dpj

(2π~)3
eipj ·(qj−qj−1)/~, (E.5)

where

Γj =





α [pj,yEz − pj,zEy] − gµbBx

α [pj,zEx − pj,xEz] − gµbBy

α [pj,xEy − pj,yEx] − gµbBz





This is the final form of the momentum eigenstate dependent term in eq. (4.18).
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Appendix F

List of symbols

Everywhere, a hat ” ˆ ” denotes an operator, and the same symbol, without a hat denotes the
corresponding eigenvalue. Boldface is a 3-dimensional vector.

p̂xi
= −i~ ∂

∂xi
, xi = (x, y, z)

p̂ = −i~∇ = −i~
(
∂

∂x
,
∂

∂y
,
∂

∂z

)

σ =
~

2

[(
0 1
1 0

)

,

(
0 −i
i 0

)

,

(
1 0
0 −1

)]

N (z) =
1

√

1 + |z|2
żj =

zj − zj−1

ε

ρ̂ = (ρ̂x, ρ̂y, ρ̂z) = (p̂x + qAx, p̂y + qAy, p̂z + qAz)

ρj = (pj,x + qAx, pj,y + qAy, pj,z + qAz)

q′
j =

1

2
(qj − qj−1)

Γ̂ = (Γ̂x, Γ̂y, Γ̂z) =





α [p̂yEz − p̂zEy] + gµbBx

α [p̂zEx − p̂xEz] + gµbBy

α [p̂xEy − p̂yEx] + gµbBz





Γ = (Γx,Γy,Γz) =





α [pyEz − pzEy] + gµbBx

α [pzEx − pxEz] + gµbBy

α [pxEy − pyEx] + gµbBz





N (zj , zj−1) =
1

√

1 + |zj |2
1

√

1 + |zj−1|2

Z(zj , zj−1) =





z∗j + zj−1

−iz∗j + izj−1

−1 + z∗j zj−1




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